On the parabolic Harnack inequality for non-local diffusion equations
نویسندگان
چکیده
منابع مشابه
Growth Theorems and Harnack Inequality for Second Order Parabolic Equations
A general approach to both divergence (D) and non-divergence (ND) second order parabolic equations is presented, which is based on three growth theorem. These growth theorems look identical in both cases (D) and (ND). They allow to prove the Harnack inequality and other related facts by general arguments, which do not depend on the structure (divergence or nondivergence) of equations. In turn, ...
متن کاملParabolic Harnack Inequality and Local Limit Theorem for Percolation Clusters
We consider the random walk on supercritical percolation clusters in Z . Previous papers have obtained Gaussian heat kernel bounds, and a.s. invariance principles for this process. We show how this information leads to a parabolic Harnack inequality, a local limit theorem and estimates on the Green’s function.
متن کاملOn a Parabolic Harnack Inequality for Markov Chains
For continuous time Markov chains on a countable state space, we derive a parabolic Harnack inequality using probabilistic methods. We derive some consequences of this inequality for the compactness of parabolic (i.e. spacetime harmonic) functions of the process.
متن کاملThe Harnack inequality for second-order parabolic equations with divergence-free drifts of low regularity
We establish the Harnack inequality for advection-diffusion equations with divergencefree drifts of low regularity. While our previous work [IKR] considered the elliptic case, here we treat the more challenging parabolic problem by adapting the classical Moser technique to parabolic equations with drifts with regularity lower than the scale-invariant spaces.
متن کاملGaussian bounds and parabolic Harnack inequality on locally irregular graphs
A well known theorem of Delmotte is that Gaussian bounds, parabolic Harnack inequality, and the combination of volume doubling and Poincaré inequality are equivalent for graphs. In this paper we consider graphs for which these conditions hold, but only for sufficiently large balls, and prove a similar equivalence. 2000 MR subject classification: 60K37, 58J35
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2019
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-019-02421-7